
Phase transformations VIII - 1Diffusive transformations

Plan

0.   Quelques exemples de transformations diffusives

1. Notions de diffusion (statistique, Fick, thermodynamique)

2. Diffusion des atomes interstitiels

3. Diffusion des atomes substitutionnels, effet Kirkendall

4. Couples de diffusion

Part VIII : Diffusion
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0. Quelques transformations diffusives

1. Précipitation

2. Décomposition spinodale

Formation de ferrite 

dans l’austénite

Formation de zone GP q

CuAl2 dans alliages Al-Cu

Zones GP dans les Al-Cu

Décomposition spontanée et 

progressive de AlZn en AlZn1 (Zn-

poor) et AlZn2 (Zn-rich)

Al-Zn 

Ferrite proeutectoide

GP = Guinier-Preston

AlZn1 AlZn2
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4. Mise en ordre

3. Transformations eutectoïdes

Formation de 

perlite depuis

l’austenite

g  Cu + d   

dans les bronzes
Perlite (Fe- / Fe3C)

Mise en ordre dans un laiton

b  b’

Mise en ordre dans

alliages Au-Cu

Cu3Au 

(avec parois d’antiphase)

Nous allons
montrer une
composante

displacive à cette
transformatioon

0. Quelques transformations diffusives

21
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1. Notions de Diffusion: par la statistique

A A

B

Profil de diffusion de B formant une solution 

idéale dans A à différents instants

t = 0

Une bille peut sauter à gauche ou à droite avec une même probabilité (1/2). La 

probabilité que la bille soit en position 𝑥 après n sauts est

• Si 𝑥 > 𝑛, 𝑝(𝑥) = 0

• Si 𝑥 = 𝑛, 𝑝(𝑥) =
1

2

𝑛

• Sinon pour 𝑥 < 𝑛, pour aller en 𝑥, la bille doit faire k sauts à droite (+) et 𝑛 − 𝑘 sauts 

à gauche (-) tels que 𝑘 − 𝑛 − 𝑘 = 2𝑘 − 𝑛 = 𝑥, ∀𝑘 ∈ [0, 𝑛]. Le nombre de façons 

d’y arriver (nombre de complexions) est donc le nombre de façons de choisir dans 

le parcours les 𝑘 sauts à droite et les (𝑛 − 𝑘) à gauche parmi 𝑛 sauts 

𝐶𝑘
𝑛 =

𝑛
𝑘

=
𝑛!

𝑘! 𝑛 − 𝑘 !
avec 𝑘 =

𝑥 + 𝑛

2

Le nombre total de sauts possibles quelque soit la position d’arrivée est σ𝑘
𝑛
𝑘

= 2𝑛 ;

et la probabilité après n sauts d’être en position 𝑥 = 2𝑘 − 𝑛 est 𝑝 𝑘, 𝑛 =
𝐶𝑘

𝑛

2𝑛

1 2 3 4 x… …

La 1ère loi de Fick stipule que la diffusion d’un élément B formant une solution idéale dans l’alliage 

A-B est tel que le flux d’atomes B est proportionnel et opposé au gradient de concentration

𝐽𝐵 = −𝐷𝐵𝑔𝑟𝑎𝑑 c𝐵

Cette loi est purement probabiliste. Pour nous en convaincre, examinons le cas 1D suivant: 
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1. Notions de Diffusion: par la statistique

→ 𝑝 𝑘, 𝑛 =
1

2𝑛

𝑛
𝑘

. De plus 𝑝 𝑥 𝑑𝑥 = 𝑝 𝑘 𝑑𝑘, donc 𝑝 𝑥 =
𝑑𝑘

𝑑𝑥
𝑝 𝑘 =

1

2
𝑝 𝑘 .

→ 𝑝 𝑥, 𝑛 =
1

2

1

2𝑛

𝑛
𝑥+𝑛

2
est binomiale. 

Cette fonction devient Gaussienne dès que n devient grand (formule de Moivre-Laplace) :

𝑛
𝑢

𝑝𝑢(1 − 𝑝) 𝑛−𝑢
𝑔𝑟𝑎𝑛𝑑𝑠 𝑛 1

2𝜋𝑛𝑝(1−𝑝)
𝑒

−
(𝑢−𝑛𝑝)2

2𝑛𝑝(1−𝑝)

Si on applique cette formule avec 𝑝 = 1/2, 𝑢 =
𝑥+𝑛

2
, on obtient

→ 𝑝 𝑥, 𝑛 =
1

2

1

2𝑛

𝑛
𝑥+𝑛

2
≈

1

𝜎 2𝜋
𝑒

−
1

2

𝑥−𝜇

𝜎

2

= 𝒩(𝜇, 𝜎2) avec espérance 𝜇 = 0 et écart-type 𝜎 = 𝑛

𝑛 = 20
n = 1

n = 2

n = 3

Note: On pourra faire un lien avec le 

coefficient de diffusion de la loi 

normale en posant 𝑛 = 4𝐷𝑡
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1. Notions de Diffusion: par la statistique

𝑙

 𝑥𝑖 variable aléatoire d’espérance μ = 0 et de variance 𝜎2 =
𝑙2

𝑑
, soit un écart-type 𝜎 =

𝑙

𝑑
. 

 Théorème central limite : la somme des variables 𝑥𝑖 à savoir 𝑋𝑛= σ𝑖=1
𝑛 𝑥𝑖 tend vers une loi normale 

(gaussienne) d’espérance μ′ = 𝑛μ = 0 et de variance 𝜎′2 = 𝑛𝜎2 = 𝑛
𝑙2

𝑑
, et d’écart-type donc 𝜎′ = 𝑙

𝑛

𝑑
. 

 𝑋𝑛

𝑔𝑟𝑎𝑛𝑑𝑠 𝑛 1

(
𝑛

𝑑
) 2𝜋

𝑒
−

1

2

𝑥2

(
𝑛
𝑑

) 𝑙2

(on retrouve la formule précédente avec 𝑙 = 1, 𝑑 = 1)

Une approche un peu différente, et valable pour toute dimension utilise un théorème 

de statistique. Après n pas, 𝑅𝑛, = σ𝑖=1
𝑛 𝑟𝑖 , avec 𝑟𝑖 vecteurs de déplacements 

élémentaires sur le réseau (cristallin). Projetons sur l’axe des Ԧ𝑥. En 2D seuls la 

moitié des pas à lieu le long de cet axe; et en 3D seuls un tiers. Appelons d la 

dimension (= 1, 2 ou 3) et 𝑥𝑖 la projections des 𝑟𝑖 sur Ԧ𝑥, autrement dit les 

déplacements élémentaires le long de Ԧ𝑥 . 

 variable 𝑥𝑖 = ±𝑙 avec une probabilité 𝑝 𝑥𝑖 = 1/d

• L’espérance de la variable 𝑥𝑖 est 𝐸 𝑥𝑖 = σ𝑖=1
𝑛 𝑝 𝑥𝑖 𝑥𝑖 = 0

• La variance de la variable 𝑥𝑖 est 𝑉(𝑥𝑖) = σ𝑖=1
𝑛 𝑝 𝑥𝑖 𝑥𝑖

2 − 0 =
𝑙2

𝑑
.     
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La 1ère loi de Fick est valable pour une solution idéale ou fortement 

diluée de B; elle établit une relation linéaire entre le flux de solutés Ԧ𝐽
(mol.m-2.s-1) et le gradient de concentration cB (mol.m-3).

𝛿𝑐𝐵

𝛿𝑡
= −𝑑𝑖𝑣 Ԧ𝐽 = −

𝜕𝐽𝑥

𝜕𝑥
+

𝜕𝐽𝑦

𝜕𝑦
+

𝜕𝐽𝑧

𝜕𝑧

Ԧ𝐽 = −𝐷𝐵𝑔𝑟𝑎𝑑 𝑐𝐵 = −𝐷𝐵

𝜕𝑐𝐵

𝜕𝑥
𝜕𝑐𝐵

𝜕𝑦
𝜕𝑐𝐵

𝜕𝑧

𝛿𝑐𝐵

𝛿𝑡
=

1

𝜕𝑥
𝐽 𝑥 − 𝐽 𝑥 + 𝑑𝑥 = −

𝜕𝐽𝑥

𝜕𝑥

𝜕𝑥

1. Notions de Diffusion: lois de Fick

La 2d loi de Fick résulte d’un bilan de soluté. Sans convection

ni réaction chimique, la variation de concentration de B dans 

une «petite boite» est donnée par la quantité de B qui entre 

moins celle qui sort.

Ԧ𝐽(𝑥)

𝐽 𝑥 = 𝐽 𝑥 . Ԧ𝑥 = valeur algébrique

du vecteur Ԧ𝐽 au point x projeté sur l’axe des Ԧ𝑥

Ԧ𝐽(𝑥 + 𝑑𝑥)

Ԧ𝑥 Ԧ𝑥

Ԧ𝑦

𝛿𝑐𝐵

𝛿𝑡
=

1

𝜕𝑥𝜕𝑦
𝐽𝑥 𝑥, 𝑦 𝜕𝑦 − 𝐽𝑥 𝑥 + 𝑑𝑥, 𝑦 𝜕𝑦 + 𝐽𝑦(𝑥, 𝑦)𝜕𝑥 − 𝐽𝑦(𝑥, 𝑦 + 𝑑𝑦)𝜕𝑥

Cas 1D Cas 2D

𝐽𝑥 𝑥, 𝑦 = valeur algébrique du vecteur Ԧ𝐽 au 
point 𝑥, 𝑦 sur l’axe des Ԧ𝑥

𝜕𝑥

𝜕𝑦

1
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Si on combine les deux lois  équation de la diffusion 
𝛿𝑐

𝛿𝑡
= 𝑑𝑖𝑣(𝐷𝑔𝑟𝑎𝑑 Ԧ𝐽 )

Et si le coefficient de diffusion 𝐷 est une constante, nous obtenons une équation sur la concentration 

qui lie la dérivée première de temps à la dérivée seconde d’espace

1𝐷
𝛿𝑐

𝛿𝑡
= 𝐷

𝛿2𝑐

𝛿𝑥2

3𝐷
𝛿𝑐

𝛿𝑡
= 𝐷

𝛿2𝑐

𝛿𝑥2
+

𝛿2𝑐

𝛿𝑦2
+

𝛿2𝑐

𝛿𝑧2
= 𝐷∆𝑐

1. Notions de Diffusion: : lois de Fick

∆𝑐 = Laplacien de la concentration

 L’équation de diffusion montre que les «bombés»

dans les profils de diffusion s’estompent avec le 

temps pour tendre vers une linéarité
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1. Notions de Diffusion: : solutions stationnaires

Cas particuliers Equation différentielle Solutions en régime stationnaire (
𝛿𝑐

𝛿𝑡
= 0)

Diffusion axiale selon Ԧ𝑥
𝛿𝑐

𝛿𝑡
= 𝐷

𝛿2𝑐

𝛿𝑥2
𝑐 𝑥 = 𝑎𝑥 + 𝑏

Diffusion radiale cylindrique
𝛿𝑐

𝛿𝑡
=

𝐷

𝑟

𝛿

𝛿𝑟
𝑟

𝛿𝑐

𝛿𝑟
𝑐 𝑥 = 𝑎 ln 𝑟 + 𝑏

Diffusion radiale sphérique 
𝛿𝑐

𝛿𝑡
=

𝐷

𝑟2

𝛿

𝛿𝑟
𝑟2

𝛿𝑐

𝛿𝑟
𝑐 𝑥 =

𝑎

𝑟
+ 𝑏

Diffusion axiale selon Ԧ𝑥 Diffusion radiale sphériqueDiffusion radiale cylindrique

x

c

r

c

r

c
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Conditions limites périodiques
(ex. régions interdendritiques)

Source planaire
(carburation, nitruration)

𝑐 𝑥, 𝑡 = 0 = ҧ𝑐 + 𝛽 𝑆𝑖𝑛
𝜋𝑥

𝑙

𝑐 𝑥, 𝑡 = ҧ𝑐 + 𝛽 𝑆𝑖𝑛
𝜋𝑥

𝑙
𝑒

−𝑡
𝜏

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2

𝜏 =
𝑙2

𝜋2𝐷

𝑐 𝑥, 𝑡 = ቤ
𝑐𝑠 , 𝑥 = 0
𝑐0 , 𝑥 → ∞

𝑐 𝑥, 𝑡 = 𝑐𝑠 + 𝑐0 − 𝑐𝑠 𝐸𝑟𝑓
𝑥

𝑙

𝑙 = 2 𝐷𝑡

𝑐 𝑥, 𝑡 = 0 = 𝑀𝛿(𝑥)

𝑐 𝑥, 𝑡 =
𝑀

𝑙 𝜋
𝐸𝑥𝑝 −

𝑥

𝑙

2

𝑙 = 2 𝐷𝑡

Fine couche planaire entre deux blocs 

1. Notions de Diffusion : diffusion axiale (1D)

𝑁𝑜𝑡𝑒:
𝑙2

2
= 𝜎2 = 𝑛 (𝑠𝑙𝑖𝑑𝑒 5) ⇒ 𝒏 = 𝟐𝑫𝒕 𝑁𝑜𝑡𝑒: 𝐸𝑟𝑓 𝑥 =

2

𝜋
න

0

𝑥

𝑒−𝑡2
𝑑𝑡
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1
B-poor

2
B-rich

A

B

m2
B > m1

B  B va de 2 vers 1

m1
A > m2

A  A va de 1 vers 2

1. Notions de Diffusion: par la thermodynamique

XB at-%

Gm

A

B

m2
B

m2
A

X1
B

Gm
A

Gm
B

m1
B

m1
A

X2
B

1
2

A B

Pour les solutions solides idéales ou

fortement diluées, la «force motrice» du flux

𝐽𝐵 = −𝐷𝐵𝑔𝑟𝑎𝑑 c𝐵

n’est que la partie probabiliste/entropique

du potentiel chimique m𝐵 (pas de partie 

enthalpique). La concentration n’est pas une 

vraie variable intensive. L’équation exacte du 

flux de matière est en fait

𝐽𝐵 = −𝐷𝐵𝑔𝑟𝑎𝑑 m𝐵
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1. Notions de Diffusion: par la thermodynamique

Solution régulière cas W > 0 et basse température:

XBA B

Gm
A

Gm
B

Gap de miscibilité

m1
A

X1
B X2

B

Gm
régulière

1
B-poor

2
B-rich

A

B

m1
B > m2

B  B va de 1 vers 2

m2
A > m1

A  A va de 2 vers 1

m2
A

m2
B

m1
B

 Décomposition spinodale
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1. Notions de Diffusion: par la thermodynamique

Le gradient de potentiel chimique est la réelle force motrice de la diffusion, tout comme 

un gradient de potentiel électrique est à l’origine du champ de la force électrique. 

On prend un modèle «visqueux» dans lequel la vitesse (et non l’accélération) est 

proportionnel à la force. En moyenne (migration), pour les atomes de soluté B:

La vitesse de migration, 𝑣𝐵 = −𝑀𝐵𝑔𝑟𝑎𝑑(𝜇𝐵) 𝑀𝐵 est la mobilité de l’atome B

Donc le flux de B est   𝐽𝐵 = −𝑐𝐵𝑀𝐵𝑔𝑟𝑎𝑑(𝜇𝐵)

Pour une solution idéale (la «force» de diffusion est purement entropique):

𝜇𝐵 = 𝜇𝐵
0 + 𝑅𝑇𝑙𝑛𝑋𝐵 avec 𝜇𝐵

0 = 𝐺𝐵
𝑚  𝑔𝑟𝑎𝑑 𝜇𝐵 =

𝑑𝜇𝐵

𝑑𝑥
=

𝑑𝜇𝐵

𝑑𝑋𝐵

𝑑𝑋𝐵

𝑑𝑥
= 𝑅𝑇

1

𝑋𝐵

𝑑𝑋𝐵

𝑑𝑥
= 𝑅𝑇

1

𝑐𝐵

𝑑𝑐𝐵

𝑑𝑥

(on a utilisé 𝑋𝐵 =
𝑐𝐵

𝑐0
et 𝑐0 = 𝑐𝐴 + 𝑐𝐵)

⇒ 𝐽𝐵 = −𝑀𝐵𝑅𝑇
𝑑𝑐𝐵

𝑑𝑥
qui s′écrit aussi 𝐽𝐵 = −𝐷𝐵

𝑑𝑐𝐵

𝑑𝑥
(1ère loi de Fick)

avec 𝐷𝐵 le coef. de diffusion des atomes B
𝐷𝐵 = 𝑀𝐵𝑅𝑇
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Cas général 

On utilise 𝛾𝐵 le coefficient d′activité de B lié à l′activité chimique par 𝑎𝐵 = 𝛾𝐵𝑋𝐵

𝜇𝐵 = 𝜇𝐵
0 + 𝑅𝑇𝑙𝑛 𝛾𝐵𝑋𝐵 

𝑑𝜇𝐵

𝑑𝑥
= 𝑅𝑇

1

𝑐𝐵

𝑑𝑐𝐵

𝑑𝑥
+ 𝑅𝑇

𝑑 𝑙𝑛𝛾𝐵

𝑑𝑥

En écrivant  
𝑑 𝑙𝑛𝛾𝐵

𝑑𝑥
=

𝑑 𝑙𝑛𝛾𝐵

𝑑 𝑙𝑛𝑋𝐵

𝑑 𝑙𝑛𝑋𝐵

𝑑𝑥
=

𝑑 𝑙𝑛𝛾𝐵

𝑑 𝑙𝑛𝑋𝐵

𝑑 𝑙𝑛𝑐𝐵

𝑑𝑥
=

𝑑 𝑙𝑛𝛾𝐵

𝑑 𝑙𝑛𝑋𝐵

1

𝑐𝐵

𝑑𝑐𝐵

𝑑𝑥
,

on obtient   𝐷𝐵 = (1 +
𝑑 𝑙𝑛 𝛾𝐵

𝑑 𝑙𝑛 𝑋𝐵
) 𝑀𝐵𝑅𝑇 = 𝐹𝐵𝑀𝐵 𝑅𝑇 𝑎𝑣𝑒𝑐 𝐹𝐵 = (1 +

𝑑 𝑙𝑛 𝛾𝐵

𝑑 𝑙𝑛 𝑋𝐵
)

1. Notions de Diffusion: par la thermodynamique

Pour une solution régulière,  𝜇𝐵 = 𝜇𝐵
0 + 𝑅𝑇𝑙𝑛𝑋𝐵 + Ω 1 − 𝑋𝐵

2

 𝑔𝑟𝑎𝑑 𝜇𝐵 =
𝑑𝜇𝐵

𝑑𝑥
=

𝑑𝜇𝐵

𝑑𝑋𝐵

𝑑𝑋𝐵

𝑑𝑥
= 𝑅𝑇

1

𝑋𝐵

𝑑𝑋𝐵

𝑑𝑥
− 2Ω(1 − 𝑋𝐵)

𝑑𝑋𝐵

𝑑𝑥
= 𝑅𝑇

1

𝑋𝐵

𝑑𝑋𝐵

𝑑𝑥
− 2Ω𝑋𝐴𝑋𝐵

1

𝑋𝐵

𝑑𝑋𝐵

𝑑𝑥
= 𝑅𝑇

1

𝑐𝐵

𝑑𝑐𝐵

𝑑𝑥
− 𝑅𝑇

1

𝑐𝐵

𝑑𝑐𝐵

𝑑𝑥

2Ω𝑋𝐴𝑋𝐵

𝑅𝑇

 𝐷𝐵= 𝑀𝐵𝑅𝑇 1 −
2Ω𝑋𝐴𝑋𝐵

𝑅𝑇

 𝐷𝐵= 𝑀𝐵𝑋𝐴𝑋𝐵
𝑑2𝐺

𝑑𝑋2

(rappel cours 2, slide 22: pour une solution régulière
𝑑2𝐺

𝑑𝑋2 =
𝑅𝑇

𝑋𝐴𝑋𝐵
− 2Ω)

Pour info
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1. Notions de Diffusion: para-équilibre

Considérons deux cubes métalliques a et b de compositions légèrement différentes: 

(a) 0.48 % C + 3.8 % Si 

(b) 0.48 % C + 0 % Si 

Les deux cubes sont soudés et chauffés à 1050°C. 

Que va-t-il se passer?

a b Données du problème:

• 𝐷𝐶 𝑑𝑎𝑛𝑠 𝐹𝑒 ≫ 𝐷𝑆𝑖 𝑑𝑎𝑛𝑠 𝐹𝑒

• 𝜇𝐶
𝐹𝑒 −𝑆𝑖 > 𝜇𝐶

𝐹𝑒

𝑐𝐶
𝑏𝑐𝐶

𝑎

𝑐𝑆𝑖
𝑎

0

0.48%

3.8%
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Au début (t = 0) le Si ne diffuse pas (ou peu), et

seul le C diffuse pour équilibrer son potentiel

chimique. Un équilibre local est atteint à

l’interface pour le carbone à t = t1.

ab F

t = 0

t = t1

A B

Le carbone continue à diffuser pour équilibrer son

potentiel dans tout l’échantillon. L’alliage se retrouve

alors à t = t2 dans un équilibre partiel (qui n’est valable

que pour le carbone), appelé paraequilibrium. Il n’est

que partiel car le silicium n’a pas eu le temps de diffuser

et n’est pas à l’équilibre.

𝜇𝐶
𝑏𝜇𝐶

𝑎
𝑐𝐶

𝑏

𝑐𝐶
𝑎

t = t2

A plus longues durées le silicium diffuse, 

et le carbone doit alors lui aussi se 

redistribuer pour maintenir en tout point 

l’homogénéité de son potentiel chimique.

A l’équilibre final (F) les concentrations 

de silicium et carbone sont homogènes. 

Il n’existe plus aucun gradient (ni de 

concentration ni de potentiel) 

𝜇𝐶

𝑐

𝑐

1 2

3

𝑐𝐶
𝑏𝑐𝐶

𝑎

𝑐

1. Notions de Diffusion: para-équilibre

𝜇𝐶 𝑐
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2. Diffusion des atomes interstitiels

On considère un alliage principalement constitué d’atomes A dans 

lequel des atomes B sont en interstitiel à faible concentration:

𝐽𝐵 = −𝐷𝐵

𝑑𝑐𝐵

𝑑𝑥

d
𝐽𝐵 =

1

𝑧
Γ𝐵𝑑 𝑐𝐵(𝑥) − 𝑐𝐵(𝑥 + 𝑑𝑥) = −

1

𝑧
Γ𝐵𝑑2 𝑑𝑐𝐵

𝑑𝑥

z = nb de sites libre voisins, d = distance interplanaire, Γ𝐵 = nb de sauts /s 

𝐷𝐵 =
1

𝑧
Γ𝐵𝑑2

Γ𝐵 = 𝑧 𝜐 𝑒
−Δ𝐺𝑚

𝑅𝑇

𝜐 = fréquence de vibration de 

l’atome B dans le réseau cristallin 
(facteur de Debye-Waller en diffraction)

Effet de la température

Exemple :

Diffusion du carbone C dans l’austénite g-Fe 

à 1000°C

𝜐 ~ 1013𝑠−1

Γ𝐶 ~ 2.109𝑗𝑢𝑚𝑝𝑠. 𝑠−1

 Seulement 1/10000 des oscillations se 

transforme en saut!

𝐷𝐶 ~ 2.10−11𝑚2. 𝑠−1

𝑐𝐵(𝑥) 𝑐𝐵(𝑥 + 𝑑𝑥)

𝐷𝐵 = 𝐷0 𝑒
−Δ𝐺𝑚

𝑅𝑇

𝑑 = 𝑑𝑥

𝑎𝑣𝑒𝑐 𝐷0 = 𝜐 𝑑2
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920°C/100h

Autodiffusion mesurée avec des atomes radioactifs A* dans A

𝐷 = 𝐷0 𝑒
−𝑄
𝑅𝑇

• Q et donc D dépend de la structure
𝐷 (g-Fe, Tf = 1805K) = 0.35 m𝑚2. 𝑠−1

𝐷 (-Fe, Tf = 1810K) = 26 m𝑚2. 𝑠−1

• 𝐷 dépend de la température

𝐷 (Cu, 800°C) = 5. 10−3 m𝑚2. 𝑠−1,   Γ𝐶𝑢 = 5.105𝑗𝑢𝑚𝑝𝑠/𝑠−1 2 𝐷𝑡 = 8 𝜇𝑚 on 1h 

𝐷 (Cu, 20°C) = 10−28 m𝑚2. 𝑠−1 , Γ𝐶𝑢 = 10−20𝑗𝑢𝑚𝑝𝑠/𝑠−1 2 𝐷𝑡 ≪ 1 𝑛𝑚 on 1h 

3. Diffusion des atomes substitutionnels, autodiffusion

Q  18 RTm pour les 

métaux fcc et hcp



Phase transformations VIII - 19Diffusive transformations

Pendant longtemps on a cru qu’un échange direct entre deux atomes A et 

B, ou un échange en «anneau» était possible. Ces modèles ont été vite 

abandonnés au profit de modèles impliquant les lacunes.

En 1947, Ernest Kirkendall rapporta des résultats surprenants 

d’expérience de diffusion dans les laitons (CuZn). Il observa que 

l’interface entre du cuivre et du laiton migre lors d’un traitement 

thermique à haute température. Cet effet provient du fait que 

l’interdiffusion entre le Cu et le Zn a lieu via les lacunes (V). 

Comme les échanges Cu-V et Zn-V ont des vitesses différentes, 

les coefficients de diffusion du Cu et du Zn sont différents . 

 effet Kirkendall

Diffusion impliquant des échanges entre atomes A  B

A  v  B

3. Diffusion des atomes substitutionnels, rôle des lacunes

Direct exchange Ring Vacancy

A B

Après 56 jours 
à 785 °C 
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Γ𝐴 = ΓAv = 𝜐 𝑧 𝑋𝑣 𝑒
−∆𝐺𝐴

𝑅𝑇

On considère pour l’instant un solide constitués uniquement d’atomes 

A, la diffusion (autodiffusion) implique un «échange» entre les atomes 

A et les lacunes. Comme tout phénomène activé thermiquement, le 

mécanisme d’échange implique une barrière en énergie.

𝑋𝑣 = fraction molaire de lacune

𝑧 nombre de nœuds du réseau proches voisins

∆𝐺𝐴 barrière énergétique de saut A → V
𝜐 fréquence de vibration de l’atome A

et    𝑋𝑣 = 𝐾 𝑒
−𝑄𝑉

𝑅𝑇

𝐷𝐴 =
1

𝑧
Γ𝐴 𝑑2 = 𝐷0 𝑒

−𝑄
𝑅𝑇 avec 𝑄 = ∆𝐻𝐴 + 𝑄𝑉

Les arguments pour cette équation sont similaires à ceux utilisés cours II slide 26. 

Pour info 𝑄𝑣  1 eV /lacune, 𝑋𝑣≈ 10−4 − 10−3 pour T approchant Tf

Pour les lacunes V

Γ𝑉 = ΓvA = 𝜐 𝑧 𝑒
−∆𝐺𝐴

𝑅𝑇 Si l’atome A se 

déplace vers la droite

𝐷𝑉 =
𝐷𝐴

𝑋𝑣

avec 

𝐷𝑉 est de plusieurs ordres de grandeurs plus grand que 𝐷𝐴

3. Diffusion des atomes substitutionnels, rôle des lacunes

Pour les atomes A 

Alors la lacune se 

déplace vers la gauche

A
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Dans les alliages A-B par substitution les interactions des 

atomes A et des atomes B avec les lacunes sont en 

générale différentes; donc

Γ
Av

≠ Γ
Bv

et par conséquent 𝐷𝐴 ≠ 𝐷𝐵

Cette différence génère un gradient de concentration de 

lacunes, et donc un flux de lacunes, qui lui-même induit un 

drift (déplacement) de l’échantillon !

Réseau cristallin, 
=Référence labo

Echantillon

Si 𝐷𝐴 > 𝐷𝐵 un excès de lacunes 
va apparaitre dans  du côté de 
l’interface /b  flux de 
lacunes depuis l’interface vers 
le bord gauche 

Et après plus de temps…

𝑱
vA

𝑱
Av

𝑱
vB

𝑱
Bv

A B

𝑱
v

= 𝑱
VA

+ 𝑱
VB

= −𝑱
Av

− 𝑱
Bv

3. Diffusion des atomes substitutionnels: effet Kirkendall

Les lacunes dans b se font remplacer 
par des atomes A. Pour garder une 
concentration de lacune constante 
dans b  flux de lacunes depuis le 

bord droit vers l’interface

Drift de l’échantillon

Mo Mo Mo

 b
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A-rich B-rich

Si on suppose que la loi de Fick s′applique et ici 

que ΓAv > ΓBv  𝐷𝐴 > 𝐷𝐵 𝐽𝐴 > 𝐽𝐵

𝐯

𝐽𝐴 = −𝐷𝐴

𝜕𝑐𝐴

𝜕𝑥
> 0, 𝐽𝐵 = −𝐷𝐵

𝜕𝑐𝐵

𝜕𝑥
< 0

Donc 𝐽𝑉 = −𝐽𝐴 − 𝐽𝐵 = (𝐷𝐴−𝐷𝐵)
𝜕𝑐𝐴

𝜕𝑥

De plus 𝐽𝑉 = − 𝑣 𝑐0< 0 avec 𝑣 = 𝐯

(mvt de lacunes  mvt opposé de l’échantillon)

On utilisera 𝑐𝐴 + 𝑐𝐵 = 𝑐0 et 𝑐𝐴 = 𝑋𝐴 𝑐0

𝐽𝐴
′ = 𝐽𝐴 − 𝑣 𝑐𝐴 = 𝐽𝐴 + 𝐽𝑉𝑋𝐴 = −(𝑋𝐵𝐷𝐴 + 𝑋𝐴𝐷𝐵)

𝜕𝑐𝐴

𝜕𝑥



෪𝐷𝐴 = ෪𝐷𝐵 = ෩𝐷 = 𝑋𝐵𝐷𝐴 + 𝑋𝐴𝐷𝐵

𝐽𝐴
′ = −෪𝐷𝐴

𝜕𝑐𝐴

𝜕𝑥
= −𝐽𝐵

′ Dans l’échantillon : 
𝜕𝑐𝐴

𝜕𝑡
= −

𝜕𝐽′
𝐴

𝜕𝑥
Equations de 

Darken

x

(diff) (adv)



Déplacement de l’échantillon
/ fils de Mo

Sur le réseau de référence: 

Sur l’échantillon: 

𝑱𝑣

𝑱𝐴

𝑱𝐵

Mo

3. Diffusion des atomes substitutionnels: équations de Darken
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• 𝐷𝐴 coefficient de diffusion intrinsèque AV 

• 𝐷𝐵 coefficient de diffusion intrinsèque BV

• ෩𝐷 = coefficient d’interdiffusion AB

• ෩𝐷 peut être mesuré expérimentalement dans 

l’échantillon à l’aide de traceurs radioactifs et en 

ajustant les courbes expérimentales sur les solutions 

analytiques des équations de Fick.

• La vitesse de drift v est mesurée par le déplacement 

relatif de l’échantillon / fils de Mo.

• Les coefficients de diffusion 𝐷𝐴 et 𝐷𝐵 apparaissent 

comme des coefficients de diffusion intrinsèques par 

rapport au réseau cristallin ( /Mo). Ils sont déduits 

de ෩𝐷 = 𝑋𝐵𝐷𝐴 + 𝑋𝐴𝐷𝐵 and (𝐷𝐴−𝐷𝐵)
𝜕𝑐𝐴

𝜕𝑥
= v 𝑐0

• ෩𝐷 = 𝐷𝐵 pour des alliages de substitution fortement 

dilués de B dans A. 

• En général, si ajouter B augmente la température de 

fusion de l’alliage, alors ෩𝐷 diminue avec B, et vice 

versa.

3. Diffusion des atomes substitutionnels: les coef. de diffusion
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Fe-32wt% NiFe

Après traitement thermique à1230°C/400h

Des porosités se forment si les lacunes ne se s’homogénéisent pas rapidement dans 

l’échantillon et restent bloquées à l’interface ou aux joints de grains.  

A. BORGENSTAM and M. HILLERT, Acta 
mater. 48 (2000) 2765-2775

3. Diffusion des atomes substitutionnels: porosités d’interface

𝐷𝐹𝑒 𝑑𝑎𝑛𝑠 𝐹𝑒 > 𝐷𝑁𝑖 𝑑𝑎𝑛𝑠 𝐹𝑒
confirmé par des mesures:

Note: Les températures de 

fusion du Fe et Ni sont 

presque les mêmes (la 

dernière règle de la slide 

précédente ne marche pas)
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Edgar González,Jordi Arbiol, Víctor F. Puntes,

Science 334, 2011, 1377.

Carving at the Nanoscale:  

With minor modifications in the chemical environment,

it is possible to control the reaction and diffusion

processes at room temperature, opening up a

synthetic route for the production of polymetallic [here

Au-Ag] hollow nanoparticles with very different

morphologies and compositions, obtained by the

simultaneous or sequential action of galvanic

replacement and the Kirkendall effect.

L.Dubau,, J.Durst,, F.Maillard,, L.Guétaz, M.Chatenet,, J.André,, E.Rossinot, 

Electrochimica Acta 56, 2011, 10658.

Formation of hollow Pt3Co nanoparticles: 

When the PEMFC is operated at low current density, the

formation of surface oxides from water and the resulting

“place-exchange” mechanism enhance the rate of diffusion

of Co atoms to the surface. Consequently, the fresh

Pt3Co/Co particles form core/shell particles with thick Pt-

shells and Co content < 5 at% and, ultimately, “hollow” Pt

nanoparticles (Kirkendall effect).

Il est possible d’utiliser l’effet Kirkendall pour 

fabriquer des particules creuses ou à 

géométries complexes

3. Diffusion des atomes substitutionnels: «particle shaping»
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3. Diffusion par «autoroutes»

𝐷 = 𝐷0 𝑒
−𝑄
𝑅𝑇

Le coefficient 𝐷0 et l’énergie d’activation 

dépendent de la structure cristalline (voir 

slide 16) mais aussi de la topologie du 

milieu de diffusion. Notons s = surface, jg = 

joint de grain, d = dislocation, 𝑣 = volume:

𝑄𝑠 < 𝑄𝑗𝑔 < 𝑄𝑑 < 𝑄𝑣

 𝐷𝑠 > 𝐷𝑗𝑔 > 𝐷𝑑 > 𝐷𝑣

avec 

• 𝛿 épaisseur du joint de grain ≈ 0.5 𝑛𝑚
• 𝑑 taille de grains ~ 50 𝑛𝑚 − 500 𝜇𝑚
• 𝜌 densité (de lignes) de dislocations ~ 107 𝑐𝑚−2 − 1012 𝑐𝑚−2

• 𝑎 aire du cœur de la dislocation ≈ 0.1 𝑛𝑚2

𝐷𝑎𝑝𝑝_𝑗𝑔 =
𝛿

𝑑
𝐷𝑗𝑔

𝐷𝑎𝑝𝑝_𝑑 = 𝜌𝑎𝐷𝑑𝐽𝑑

𝐽𝑣

𝐽𝑗𝑔

𝛿

𝑑
𝐷𝑗𝑔

𝐷𝑎𝑝𝑝_𝑗𝑔

𝐷𝑣

𝐷𝑗𝑔
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4. Couples de diffusion

Nb () Al ()

 b

g d 

t = 0

Xb Xb XbgXgb Xgd Xdg Xd Xd

Soudons deux blocs, Nb pur + Al pur. Si la température

permet d’activer la diffusion, des phases intermétalliques

doivent se former à l’interface selon le diagramme de phases

en partant du «milieu» du diagramme vers les deux

extrémités. Les phases croissent pour envahir les parties en

métaux purs. A l’équilibre, seules deux phases en général

subsisteront (règle des phases de Gibbs)

Nb Al

t1

t3

t4→ ∞

Alg db

Alg d

Cas xAl = 50 at-%, T = 610°C
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4. Couples de diffusion

Nb Al

A l’interface entre chaque phase, on fait l’hypothèse que les compositions/concentrations sont

données par l’équilibre local. La diffusion a lieu et les vitesses de déplacement des interfaces

sont données par les bilans de matière dans lesquels interviennent les coefficients de diffusion et

les gradients de concentrations liés au différences de compositions.

Note: les concentrations sont discontinues mais les potentiels chimiques eux sont continus.

Nb3Al Nb2Al NbAl3

() (b) (g) (d) ()

cb

cb

cbg

cgb

cgd

cdg

cd

cd

vd

vb

vgdvbg

cAl

x = distance
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Bilan aux interfaces

c cb

Ԧ𝑣

𝐽𝛽(diff)𝐽𝛼 (diff)

x* x

c cb

Nb b

4. Couples de diffusion

Nb Nb3Al

() (b)

cb

cb

cbg

vb

vbg

cAl

x

On travaille dans un élément de volume à l’interface dans lequel a lieu la transformation de phase, ici 

 (Nb)  b (Nb3Al). En notant comme d’habitude 𝐽𝛼, 𝐽𝛽 et 𝑣 les valeurs algébriques des vecteurs

Pour le soluté (Al)  
𝑑𝑐

𝑑𝑡
= 𝐽𝛼 − 𝐽𝛽 + 𝑣 𝑐𝛽𝛼 − 𝑐𝛼𝛽 = 0 avec 𝐽𝛼 = −𝐷𝛼

𝑑𝑐𝛼

𝑑𝑥
< 0 et 𝐽𝛽 = −𝐷𝛽

𝑑𝑐𝛽

𝑑𝑥
< 0, 

𝑣 =
𝐷𝛼

𝑑𝑐𝛼𝛽

𝑑𝑥
− 𝐷𝛽

𝑑𝑐𝛽𝛼

𝑑𝑥
𝑐𝛽𝛼 − 𝑐𝛼𝛽

B𝑐𝛼𝛽 𝑐𝛽𝛼

L’Al qui arrive depuis la phase b permet son enrichissement à 

l’interface b/  malgré une perte côté ; cette augmentation en Al 

permet la transformation  (Nb)  b (Nb3Al), et donc l’envahissement 

de b dans le bloc  à la vitesse algébrique 𝑣
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Résumé

• Le flux de diffusion est proportionnel et opposé au gradient de potentiel chimique.  

La diffusion s’arrête lorsque l’équilibre des potentiels chimiques est atteint.

• Pour les solutions idéales ou fortement diluées, le flux est proportionnel et opposé au 

gradient de concentration (1ère loi de Fick)

• Le coefficient de proportionnalité est alors le coefficient de diffusion 𝐷𝐵 = 𝐷0 𝑒
−𝑄

𝑅𝑇

• La diffusion dans les alliages binaires A-B par substitution n’est possible que par 

l’intermédiaire des lacunes, et ce même si leur concentration est faible (XV  10-4) car 

celles-ci diffusent beaucoup plus vite que les atomes A ou B. La différence 

d’interaction de A et B avec les lacunes expliquent pourquoi en général 𝐷𝐴 ≠ 𝐷𝐵 . 

• Le flux de lacunes génère un mouvement relatif entre l’échantillon et le réseau 

cristallin (effet Kirkendall). Au niveau de l’échantillon, tout se passe comme si on 

pouvait ignorer l’existence des lacunes et considérer un échange direct 𝐴 ↔ 𝐵, le 

coefficient d’interdiffusion est ෩𝐷 = 𝑋𝐵𝐷𝐴 + 𝑋𝐴𝐷𝐵

• Pour un couple de diffusion A+B, toutes les phases intermédiaires AxBy peuvent se 

former lors d’un maintien en température avant d’atteindre l’équilibre. Les vitesses de 

déplacement des interfaces sont données par les bilans de soluté.




