Part VIII : Diffusion

Plan
Quelques exemples de transformations diffusives
Notions de diffusion (statistique, Fick, thermodynamique)
Diffusion des atomes interstitiels
Diffusion des atomes substitutionnels, effet Kirkendall
Couples de diffusion
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0. Quelques transformations diffusives

1. Précipitation

Ferrite proeutectoide Zones GP dans les Al-Cu
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progressive de AlZn en AlZn, (Zn-
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0. Quelques transformations diffusives

3. Transformations eutectoides

y—>Cu+o
Jempérature °C \ dans les bronzes
Perlite (Fe -a/FeC) e Prase inide 10007 Liquid ﬂ
A, fia (8)+(y) 1+ [+ (FeC) goo
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1. Notions de Diffusion: par la statistique

La 1¢ loi de Fick stipule que la diffusion d’'un élément B formant une solution idéale dans I'alliage
A-B est tel que le flux d’atomes B est proportionnel et opposé au gradient de concentration

Jg = —Dpgrad(cg)
Cette loi est purement probabiliste. Pour nous en convaincre, examinons le cas 1D suivant:

hj/“

@ 12(3/4]...|x[--

Une bille peut sauter a gauche ou a droite avec une méme probabilité (1/2). La
probabilité que la bille soit en position x apres n sauts est

* Six>n,px)=0
. 1\
e Six=n,px) = (E)
 Sinon pour x < n, pour aller en x, la bille doit faire k sauts a droite (+) et n — k sauts
agauche (-)telsque k — (n — k) = 2k —n = x, Yk € [0,n]. Le nombre de fagons
d’y arriver (nombre de complexions) est donc le nombre de fagons de choisir dans
le parcours les k sauts a droite et les (n — k) a gauche parmi n sauts

Profil de diffusion de B formant une solution n! x+n

idéale dans A a différents instants CI? = (Z) = m avec k = >
. \n— .

Le nombre total de sauts possibles quelque soit la position d’arrivée est ), (Z) = 2";

n
et la probabilité aprés n sauts d’étre en position x = 2k —n est p(k,n) = Z—’,‘l
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1. Notions de Diffusion: par la statistique

Zn

= p(k,n) = i(Z) De plus p(x)dx = p(k)dk, donc p(x) = <=p(k) = Zp(k).

11 1" . .
- p(x,n) =¥ est binomiale.

Cette fonction devient Gaussienne des que n devient grand (formule de Moivre-Laplace) :

grandsn

N\ weq (n—u)
(u)p (1-p) \2mnp(1-p)

Si on applique cette formule avec p = 1/2, u = x;—n on obtient

n _1(x=p)?
- p(x,n) = 1i<X+n> ~——e (5 = N(u,0%) avec espérance u = 0 et écart-type o = n

22" oV2T

n =20 \
03k N
/ \ . )
/ \ Bionomial
!
.-; Gauss
_J‘ 0.06 \
_f ‘,L
f’ 0.04 \_\
/ \
/
f/
/ 002r \-\
.\\
J'f b
& ‘\_
| p—r | L 2
=20 =10 10 20

26 o 0 1o 20

Note: On pourra faire un lien avec le
coefficient de diffusion de la loi
normale en posant n = 4Dt
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1. Notions de Diffusion: par la statistique

Une approche un peu différente, et valable pour toute dimension utilise un théoreme
de statistique. Aprés n pas, R,,, = Y1, 7% , avec r; vecteurs de déplacements
élémentaires sur le réseau (cristallin). Projetons sur I'axe des x. En 2D seuls la
moitié des pas a lieu le long de cet axe; et en 3D seuls un tiers. Appelons d la
dimension (= 1, 2 ou 3) et x; la projections des 7; sur ¥, autrement dit les
déplacements élémentaires le long de x .

v
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_LM:,
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— variable x; = +[ avec une probabilité p(x;) = 1/d

. : [
« L'espérance de la variable x; est E(x;) = Yi=;p(x;) x; = 0

2
» Lavariance de la variable x; est V(x;) = XL, p(x;) (x? — 0) = %.

. e , . . 12 . p l
= x; variable aléatoire d’espérance p = 0 et de variance o2 = —, soit un écart-type o = —.
! d Vd

— Théoréme central limite : la somme des variables x; a savoir X,= I, x; tend vers une loi normale

2
(gaussienne) d’espérance p’ = np = 0 et de variance ¢'? = no? = n%, et d’écart-type donc ¢’ = l\/g.

1_x? 015F
grandsn 1 242 '
S (d)

= Xn e
\/ém 0.10f

TN

(on retrouve la formule précédente avec l =1,d = 1) , )

0.05F
d=1
d=2

10 5 5 10 d=3
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1. Notions de Diffusion: lois de Fick

La lere loi de Fick est valable pour une solution idéale ou fortement

diluée de B; elle établit une relation linéaire entre le flux de solutésf
(mol'm-%s1) et le gradient de concentration cg (mol'm-3).

La 29 loi de Fick résulte d’'un bilan de soluté. Sans convection
ni réaction chimique, la variation de concentration de B dans
une «petite boite» est donnée par la quantité de B qui entre

moins celle qui sort.

Cas 1D
J(x) J(x + dx)
— > —>
1

| | .

dx X

) 0

o 0 S+ d)] = 2

J(x) = J(x).x = valeur algébrique
du Vecteurfau point x projeté sur I'axe des X

Cas 2D
AL
6cg 1
5t dxdy

_aCB_

0x
dcg

i= —Dggrad(cg) = —Dp

dy
dcg
L 07
SCB . _ a]x a]y a]z
5t —dw(f) B _<6x * dy * 0z
N
kN
> +
y A A
@: Z
'k (c
dy ﬂ\
A7 —- 2
) 0x

[/ (e, y)0y — [ (x + dx, )0y + [, (x,¥)0x — ], (x,y + dy)dx]

J,.(x,y) = valeur algébrique du vecteur J au

point (x, y) sur I'axe des X
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1. Notions de Diffusion: : lois de Fick

Si on combine les deux lois — équation de la diffusion % = div(Dgrad(f))

Et si le coefficient de diffusion D est une constante, nous obtenons une équation sur la concentration
qui lie la dérivée premiére de temps a la dérivée seconde d’espace

(1D) oc _ b 0%c
S5t Ox?

(3D) oc _ b b2c N b%c N b2c _ DA
5t \ox? sy? ez2) T C¢

Ac = Laplacien de la concentration
— L’équation de diffusion montre que les «bombés»

dans les profils de diffusion s’estompent avec le
temps pour tendre vers une linéarité

TN

(a) X (b)

Cartesian (left), cylindrical (middle), and spherical (right) coordinates

Cartesian coordinates x, vy, z:

o0 _p (0 o0 FC
0x2 + oy 022 )7

at
Cylindrical coordinates r, 6, z:

0C _D[0 (0CY, 0 (10CY, 0 (0C\],
a ~ r |or ?01' 06 \ r 0e dz 702 '

Spherical coordinates r, @, p:

0C _D[0 (k0C\ | 1 0 (L oo\ 1 oC
at 2 |ar\" or sin@ a0 \"Y a6 sin? @ 0%y
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1. Notions de Diffusion: : solutions stationnaires

Cas particuliers Equation différentielle Solutions en régime stationnaire (Q = 0)
S5t
2
Diffusion axiale selon ¥ E = Dﬁ c(x)=ax+b
ot Hx?

Diffusion radiale cylindri e Do (x) = aln(r) + b

iffusion radiale cylindrique 5t- 75\ 5 c(x) = aln(r
Diffusion radiale sphéri oc_ D20 (% () ==+b

iffusion radiale sphérique 5t 250\ 5y c(x) =

Diffusion axiale selon % Diffusion radiale cylindrique Diffusion radiale sphérique
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dc B d%c

1. Notions de Diffusion : diffusion axiale (1D)

5t Do

Conditions limites périodiques
(ex. régions interdendritiques)

Fine couche planaire entre deux blocs

Source planaire
(carburation, nitruration)

c(x,t=0)=c_+,BSin(nl—x)

¢ (x,t) =E+,6’Sin(n—lx)e_7t

l2

T= —
2D

TC

t=0

c(x,t=0)=M5(x)

c(x,t) = % Exp <_ (%2)

| = 2V/Dt

lZ
Note: 7= 02 =n (slide5) = n = 2Dt

s, x =0
Co, X =

c(x,t) =

X
[

c (x,t) =c5+(c0—cs)Erf( )

| = 24Dt

2 X
Note: Erf(x) = \/—_f et dt
T Jo
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1. Notions de Diffusion: par lathermodynamique

Pour les solutions solides idéales ou
fortement diluées, la «force motrice» du flux

Jp = —Dpgrad(cp)
n’est que la partie probabiliste/entropique
du potentiel chimique ugz (pas de partie
enthalpique). La concentration n’est pas une
vraie variable intensive. L’équation exacte du
flux de matiére est en fait

E = —Dpgrad(ug)
A
B-poor

we> s =>Bvade2versl
> 1Py => Avade 1 vers 2

O—
XlB XZB B XB a.t'%
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1. Notions de Diffusion: par lathermodynamique

Solution réguliere cas Q2 > 0 et basse température: gy

A

&

B-poor

u'sg> g > Bvade 1vers 2
Wa> 'y >Avade 2vers 1

Gap dei misfcibilité

I

— X

>o
o
W

XlB XZB

— Décomposition spinodale
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1. Notions de Diffusion: par la thermodynamique

Le gradient de potentiel chimique est la réelle force motrice de la diffusion, tout comme
un gradient de potentiel électrique est a I'origine du champ de la force électrique.

On prend un modéle «visqueux» dans lequel la vitesse (et non I'accélération) est
proportionnel a la force. En moyenne (migration), pour les atomes de soluté B:

La vitesse de migration,| vg = —Mggrad(ug) My est la mobilité de 'atome B

Donc le flux de B est | J; = —cgMpgrad(ug)

Pour une solution idéale (la «force» de diffusion est purement entropique):

= u® + RTInXgz avecu = G rad — 4 _ dtpdXp _ pp 1 dXp _ pp 1 dp
He M+ B Hp B =9 (‘uB) dx dXp dx Xp dx cp dx

(On a ut”'Sé XB = Z_B et Co = Cy + CB)
0

= Jp = —MpRT 2 quis'écritaussi Jp = —Dp =2 (1% loi de Fick)

avec Dy le coef. de diffusion des atomes B

=>| Dy = MgRT
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1. Notions de Diffusion: par la thermodynamique

Pour une solution réquliére, pg = up + RTInXg + (1 — Xg)?

_ dB _ dppdXp _ pp 1 dXp _ 4Xp _ p7 1. 2XB _ 13X _ prldes _ pp 1 dep20XaXp
= grad(uB) T odx dXp dx o RTXB dx ZQ(l XB) dx RTXB dx ZQXAXB Xp dx - RTCB dx RTCB dx RT
20X 42X
— Dp= MgRT (1 — #) (rappel cours 2, slide 22: pour une solution réguliére
d2G a6 _ _RT —20)
:>DB= MBXAXBW dXZ_XAXB

Cas général @ Pour info

On utilise y le coefficient d'activité de B lié a l'activité chimique par ag = yzXp

— 40 dup _ pp 1 dcs dinyp
Ug = Ug + RTIn(ypXg) = — =R o +RT ——

P dln dln dlinX dln dInc dln 1 dc
En écrivant YB _ VB B _ VB B _ YB 1 B,
dx dinXgp dx dinXgp dx dinXpcp dx

dinyp

) MgRT = FyzMy RT avec Fy = (1 + 225
lelXB

on obtient Dy = (1 + dinXg
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1. Notions de Diffusion: para-équilibre

Considérons deux cubes métalliques a et b de compositions |légérement différentes:
(a) 0.48 % C + 3.8 % Si
(b) 0.48% C + 0 % Si

Les deux cubes sont soudés et chauffés a 1050°C.

Que va-t-il se passer?

a b Données du probléme:

e Dcdans Fe > Dg; dans Fe

© ufe TS > pge

a
A C:
3.8% St
a b
0.48% Cc Cc
0 >
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1. Notions de Diffusion: para-équilibre

Au début (t = 0) le Si ne diffuse pas (ou peu), et Le carbone continue a diffuser pour équilibrer son

seul le C diffuse pour équilibrer son potentiel potentiel dans tout I'échantillon. L'alliage se retrouve

@ chimique. Un équilibre local est atteint a @ alors a t = t, dans un équilibre partiel (qui n’est valable
I'interface pour le carbone at=t;. que pour le carbone), appelé paraequilibrium. Il n’est

que partiel car le silicium n’a pas eu le temps de diffuser

C a : et n’est pas a I'équilibre.
i
a : b Uc 4 C“ b
t=0 “c : Cc a b tc
i t=t Hc Hc
i 2 a

A plus longues durées le silicium diffuse,
et le carbone doit alors lui aussi se
redistribuer pour maintenir en tout point
I’'homogénéité de son potentiel chimique.

A I’équilibre final (F) les concentrations
de silicium et carbone sont homogénes.
Il n'existe plus aucun gradient (ni de
concentration ni de potentiel)
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2. Diffusion des atomes interstitiels

On considére un alliage principalement constitué d’atomes A dans cp(x) cp(x + dx)
lequel des atomes B sont en interstitiel a faible concentration: © @
o O 0.0 10 00 . .
[ ] [ ] @B interstitials
- o O.O: O.O C O QO atoms of
dCB 0 o O'.OIO 0 0O parent lattice
Jp = —Dp—— 0,0 01010 0 ©
dx L | D, = 11_' d? o o.o'!_gj\o'o o
1 1 5 (dcp B B (@) O'O O:OIO Cc O©
Jp = _Tpd (cp(x) — cp(x + dx)) = ——Ipd (E) 0 © 010000

z = nb de sites libre voisins, d = distance interplanaire, I'; = nb de sauts /s

Effet de la température

[ =zve RT

v = fréquence de vibration de

’atome B dans le réseau cristallin

(facteur de Debye-Waller en diffraction)

—-AGp,
l::> DB = DO e RT

avec Dy = v d?

Cs

(b) X

Exemple :

Diffusion du carbone C dans 'austénite y-Fe
a 1000°C

v~ 1013571

I ~ 2.10°%umps.s™!

— Seulement 1/10000 des oscillations se
transforme en saut!

Dg ~2.10711m2 571
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3. Diffusion des atomes substitutionnels, autodiffusion

Autodiffusion mesurée avec des atomes radioactifs A* dans A O T ,
Gold crystal Gold crystal

-Q
D=D0 e RT

« D dépend de la température

D (Cu, 800°C) =5.10"3 um?.s71, T, =5.10°jumps/s~!
D (Cu, 20°C) =102 um?.s71, T, =1072%umps/s™

 Q etdonc D dépend de la structure

2v/Dt = 8 um on 1h
2VDt < 1 nm on 1h

DIAMOND CUBIC

0% IDES
ALRALTL
HALTOES|
TETRAGONAL]
GRAPHITE
foo METALS
bee TRANSITION Q ,;:; 18 RTm pour les
hep métaux fcc et hep
“boc ALKALS
boo RARE METALS
EARTH
1 | 1 | 1 1
10 15 20 25 30 35
(b) Normalised activation energy, Q/RTy

Va Thin layer of Au*

(a)
1.0

920°C/100h

o
00
T

4
o
T

c--M (—i
~ 2J(xpn) *F wr)

o
»H
T

Relative concentration
of radioactive gold, Au*

o
)

1

0 L 1 !
-15 -12 -09 =06 -03 O 03 06 09 12 15

(b)

Distance, x, mm

D (y-Fe, T, = 1805K) = 0.35 pm?.s™1
D (a-Fe, T, = 1810K) = 26 pm?2.s™1

bee. RARE EARTH I

bec ALKALI

_HETAL CARBIDES
bec, TRANSITION METALS)

€.

=
=

fee METALS

ATKALT

116 1 1 | | 1 | |
B 15 EP 13 12 -1 10 -9

10 10 10 10 10 10 10 10
(a) Melting point diffusivily D(Tn)/m?s
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3. Diffusion des atomes substitutionnels, role des lacunes

Diffusion impliquant des échanges entre atomes A < B

Pendant longtemps on a cru qu’un échange direct entre deux atomes A et
B, ou un échange en «anneau» était possible. Ces modeles ont été vite
abandonnés au profit de modéles impliquant les lacunes.

Weight percent zinc

O O O O oﬂ o O O O O 1 1zoo<"108a;§C 20 30 4D B0 40 U0 WD 00 69
O @O0 ©0@o0 0000 1]z 48 P
Q00 QQ0o00 OO |slel7's
2000 00 0000 | [t | 7
irect exchange Rin Vacancy | et
A 6 V H B 00 1‘0 2’0 3;/ 4‘0 5’0 EL E7‘0 8|;0 :9‘0 ‘100
En 1947, Ernest Kirkendall rapporta des résultats surprenants Mo waes alectioplang:Cii
d’expérience de diffusion dans les laitons (CuZn). Il observa que // -
I'interface entre du cuivre et du laiton migre lors d’un traitement ( s 1 R o
thermique a haute température. Cet effet provient du fait que . Do o |- ¥ g Brass
I'interdiffusion entre le Cu et le Zn a lieu via les lacunes (V). L T | i ® 8 6 8
Comme les échanges Cu-V et Zn-V ont des vitesses différentes, =
les coefficients de diffusion du Cu et du Zn sont différents . Apres 56 jours
4785 °C

= effet Kirkendall
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3. Diffusion des atomes substitutionnels, role des lacunes

On considére pour l'instant un solide constitués uniqguement d’atomes

A, la diffusion (autodiffusion) implique un «échange» entre les atomes *4 *t&.##
. N . s . istortion J

A et les lacunes. Comme tout phénoméne activé thermiquement, le z;;;es § § § I +

mécanisme d’échange implique une barriére en énergie. ¢§

Vacancy

Pour les atomes A X, = fraction molaire de lacune
avec | z nombre de nceuds du réseau proches voisins

—AGy o L
[,=T,,, =vzX,e RT AGA’ barriére enefrgetllque de’ sautA -V
v fréquence de vibration de 'atome A
-Qy Les arguments pour cette équation sont similaires a ceux utilisés cours |l slide 26.
et| X, =KeRrr Pour info Q, ~ 1 eV /lacune, X,~ 10~* — 1073 pour T approchant T;

1 —Q
[> DA=;FA d?= Dy eRT avecQ = AH, + Qy

Pour les lacunes V

—-AGy [> D, = DA
[y =T, ,a=vVze RT VT y Sil'atome A se Alors la lacune se
v ) R S
déplace vers la droite déplace vers la gauche

[> Dy, est de plusieurs ordres de grandeurs plus grand que D4
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3. Diffusion des atomes substitutionnels: effet Kirkendall

Dans les alliages A-B par substitution les interactions des
atomes A et des atomes B avec les lacunes sont en
générale différentes; donc

FA_)V + FB_>V et par conséquent D, # Dg

Cette différence généere un gradient de concentration de
lacunes, et donc un flux de lacunes, qui lui-méme induit un
drift (déplacement) de I'échantillon !

Si D4 > Dg un exces de lacunes Les lacunes dans B se font remplacer A—-v Bov
. , : va apparaitre dans o du c6té de par des atomes A. Pour garder une
Réseau cristallin, » .
Yy lab linterface a/p — flux de concentration de lacune constante .
[rererence labo lacunes depuis l'interface vers dans p — flux de lacunes depuis le | ET apres plus de temps..
Echantillon le bord gauche bord droit vers l'interface

= Drift de I'échantillon

O
S 4G TE
+4% 4549

(M)
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3. Diffusion des atomes substitutionnels: équations de Darken

X
Si on suppose que la loi de Fick s'applique et ici e |
que Tay > Tgy= Do > Dp= |l > U Wz S o RSN | s B O B o
On utilisera ¢y + cg = ¢y et ¢y = X4 ¢ ,A_nChEI :B-ﬂCh
Sur le réseau de référence: — HE ]
dcy dcg —sJJE s .
Ja==Da7->0,  Jp=—Dp——-<0 R O U U O O O
oloo sele oo
boneJy = ~Ja~Js = Ca=D) 5] S IR P
Deplus Jy=—vc¢y<0 avecv = ||\7|| DEE EE """ E'E‘
(mvt de lacunes <> mvt opposé de I'échantillon) LB ﬂ E - EH .
Sur Véchantilon ;f Mo) r |
(diff) (adv) Déplacement de I'échantillon T < ] < ]—>
Ja=Ja—vega=Ja+JvXqa=—XpDy + XADB)_ / fils de Mo v 5
- A, L Dans I'échantillon : 24 = _ %/
—> Equations de Ja==Da7z-==Jp = | Dans 'échantillon : % = — ==
Darken 7
Dy = Dp =D = XgDy + X4Dp

—
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3. Diffusion des atomes substitutionnels: les coef. de diffusion

100
1600

[Cul / % k..
80 60 40 20 0

10004’
=

800 4

600

400

-13

200

1455°C
14004 Liq L
1200+ r

o 085'C L

S (Cu,Ni)

A+ ap I

20 40 60 80 100
INil / % K.B.

"
@
wl
-
E
g -14
s
bt D¢, WXy =1
[
[ -
o
B |
2
."‘_é
B ]
o o
=] o
- |
i o
-16 ] 1 I I
Cu 02 04 06 08 Ni

Atomic fraction nickel

Fig. 2.21 The relationship between the various diffusion coefficients in the Cu-Ni
system at 1000 °C (After A.G. Guy, Inrroduction to Materials Science, McGraw-Hill,

New York, 1971.)

D, coefficient de diffusion intrinseque A<>V
Dy coefficient de diffusion intrinséque B«V

~

D = coefficient d’'interdiffusion A«~B

D peut étre mesuré expérimentalement dans
I’échantillon a l'aide de traceurs radioactifs et en
ajustant les courbes expérimentales sur les solutions
analytiques des équations de Fick.

La vitesse de drift v est mesurée par le déplacement
relatif de I'’échantillon / fils de Mo.

Les coefficients de diffusion D, et Dy apparaissent
comme des coefficients de diffusion intrinseques par

rapport au réseau cristallin (< /Mo). lls sont déduits
0 Ca

de D = XzD, + X,D5 and (Da—Dp) =2 =V ¢

D = Dy pour des alliages de substitution fortement
dilués de B dans A.

En général, si ajouter B augmente la température de

fusion de l'alliage, alors D diminue avec B, et vice
versa.
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3. Diffusion des atomes substitutionnels: porosités d’interface

Des porosités se forment si les lacunes ne se s’Thomogéneéisent pas rapidement dans
I’échantillon et restent bloquées a l'interface ou aux joints de grains.

Fe-32wt% Ni

=€ ¢
Apres traitement thermique a1230°C/400h

A. BORGENSTAM and M. HILLERT, Acta
mater. 48 (2000) 2765-2775

DFe dans Fe > DNi dans Fe

confirmé par des mesures:

Note: Les températures de
fusion du Fe et Ni sont
presque les mémes (la

derniere regle de la slide
préceédente ne marche pas)
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3. Diffusion des atomes substitutionnels: «particle shaping»

Il est possible d’utiliser I'effet Kirkendall pour
fabriquer des particules creuses ou a
geometries complexes

w— Experimental profile

A -100 at% Pt ~ B —1~—Homogeneous Pt.Co (fit)
= V2 2~ "Pt-skin"/Pt,Co core (fit)
g 3. "Pt-skin"/Co core (fit)
= 08 4= "Pt-hollow" particle (fit)
£
2 04
E
S 00

Position from the center of the particle | nm

L.Dubau, J.Durst, F.Maillard, L.Guétaz: M.Chatenet, J.André, E.Rossinot,
Electrochimica Acta 56, 2011, 10658.

Formation of hollow Pt;Co nanoparticles:

When the PEMFC is operated at low current density, the
formation of surface oxides from water and the resulting
‘place-exchange” mechanism enhance the rate of diffusion
of Co atoms to the surface. Consequently, the fresh
Pt;Co/Co particles form core/shell particles with thick Pt-
shells and Co content < 5 at% and, ultimately, “hollow” Pt
nanoparticles (Kirkendall effect).

02D TE® W
QOO V
clEgeasnsa
DQ@Q@@I}

Edgar Gonzalez,Jordi Arbiol, Victor F. Puntes,
Science 334, 2011, 1377.

Carving at the Nanoscale:

With minor modifications in the chemical environment,
it is possible to control the reaction and diffusion
processes at room temperature, opening up a
synthetic route for the production of polymetallic [here
Au-Ag] hollow nanoparticles with very different
morphologies and compositions, obtained by the
simultaneous or sequential action of galvanic
replacement and the Kirkendall effect.
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3. Diffusion par «autoroutes»

— - : : ' ]]g . 1)
D =Dy erT b 5§ J Dapp_jg = Eng
d —:0:: g Dapp a = paDg
Le coefficient D, et I'énergie d’activation i Ja )
dépendent de la structure cristalline (voir X
slide 16) mais aussi de la topologie du avec
milieu de diffusion. Notons s = surface, jg = « & épaisseur du joint de grain ~ 0.5 nm
joint de grain, d = dislocation, v = volume:  dtaille de grains ~ 50 nm — 500 um
« p densité (de lignes) de dislocations ~ 107 cm™2 — 1012 cm™2
Qs <Qjg <Qa < « a aire du coeur de la dislocation ~ 0.1 nm?
— DS >D]g >Dd >Dv
Metol 4 G * —— decreasing temperature ——
log O
Weld interface 1/7 .
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4. Couples de diffusion

Soudons deux blocs, Nb pur + Al pur. Si la température
permet d’activer la diffusion, des phases intermétalliques
doivent se former a l'interface selon le diagramme de phases
en partant du «milieu» du diagramme vers les deux
extrémités. Les phases croissent pour envahir les parties en Nb (o) Al (o)
métaux purs. A lI'équilibre, seules deux phases en général
subsisteront (regle des phases de Gibbs)

Cas x, =50 at-%, T =610°C

2600

22001

1800 -

3

%

.
_

Temperature (° C)

0 10 20 30 40 50 60
Nb Atomic Percent Aluminum Al
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4, Couples de diffusion

cul  NO

Al
() (B) () ooy (0) (o)
C CS(X
vop
7 V(XS
coB -
I vBY Vo x = distance

A linterface entre chaque phase, on fait I'hypothése que les compositions/concentrations sont
données par I’équilibre local. La diffusion a lieu et les vitesses de déplacement des interfaces

sont données par les bilans de matiére dans lesquels interviennent les coefficients de diffusion et
les gradients de concentrations liés au différences de compositions.

Note: les concentrations sont discontinues mais les potentiels chimiques eux sont continus.
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4. Couples de diffusion

Bilan aux interfaces Cal
x* X Nb Nb,Al
S o
" > 5 (o) (B)
@‘
COL Ca[)’ C.Ba CB VaB B
— < cha =
JE(diff) | JA(diff) chr
€~ € cbl . -
cY ; ch -7 vBY

[
»

X

On travaille dans un élément de volume a l'interface dans lequel a lieu la transformation de phase, ici

a (Nb) — B (Nb3Al). En notant comme d’habitude J%, J# et v les valeurs algébriques des vecteurs

Pour le soluté (Al) = = —]“ —JF +v(cP¥ - c*F) =0 avec J* = —D,

LAl qui arrive depuis la phase B permet son enrichissement a
I'interface B/ a malgré une perte coté a; cette augmentation en Al
permet la transformation o (Nb) — B (Nb3Al), et donc I'envahissement
de B dans le bloc a a la vitesse algébrique v

<0et]ﬁ —D[;—<0
dc?P dcha
b= Da=gc = Do—gx
Cﬁa—caﬁ
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Résumeé

« Le flux de diffusion est proportionnel et opposé au gradient de potentiel chimique.
La diffusion s’arréte lorsque I'équilibre des potentiels chimiques est atteint.

» Pour les solutions idéales ou fortement diluées, le flux est proportionnel et opposé au
gradient de concentration (1€ loi de Fick)
-Q
« Le coefficient de proportionnalité est alors le coefficient de diffusion Dz = D, erT
« Ladiffusion dans les alliages binaires A-B par substitution n'est possible que par
I'intermédiaire des lacunes, et ce méme si leur concentration est faible (X, ~ 104) car

celles-ci diffusent beaucoup plus vite que les atomes A ou B. La différence
d’interaction de A et B avec les lacunes expliquent pourquoi en général D, # Dg .

« Le flux de lacunes génere un mouvement relatif entre I’échantillon et le réseau
cristallin (effet Kirkendall). Au niveau de I'échantillon, tout se passe comme si on
pouvait ignorer I'existence des lacunes et considérer un échange direct A < B, le
coefficient d’interdiffusion est D = XzD, + X4Dp

* Pour un couple de diffusion A+B, toutes les phases intermédiaires A,B, peuvent se
former lors d’'un maintien en température avant d’atteindre I'équilibre. Les vitesses de
déeplacement des interfaces sont données par les bilans de soluté.
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